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Universitaria, Ćordoba, Argentina

Received 18 October 1996

Abstract. The first-passage time distribution to reach the attractor of the stochastic differential
equationẊ(t) = a(X2 − X3)+√εξ(t) is analytically obtained by using a previously reported
scheme:the stochastic path perturbation approach. A second-order perturbation theory, in the
small noise parameter

√
ε, is introduced to analyse the random escape, of the stochastic paths,

from the marginal unstable stateX = 0. The anomalous fluctuation of the phase-space variable
X(t) is analytically calculated by using the instanton-like approximation. We have carried out
Monte Carlo simulations showing good agreement with our theoretical predictions.

1. Introduction

Nonlinear systems far from equilibrium exhibit a variety of instabilities when the appropriate
control parameters are changed [1, 2]. By such changes of the control parameters the
system can be placed in an unstable state. Therefore the system, in general, will relax to
a metastable (or global) stationary state. This transient process is triggered by the noise
O(√ε) and the statistical description of such a transient constitutes one of the main subjects
of non-equilibrium statistical mechanics.

A detailed description of the relaxation process depends on the nature of the normal
form involved near the critical point of the system. Typical cases are those possessing the
inversion symmetry transformationX→−X. This case has been studied in order to analyse
the on-resonance single-mode laser with saturable absorber and in the optical Freedericksz
transition [3, 4]. The theoretical approach is based on the fact that each stochastic path
(up to O(

√
ε)) can be approximated systematically with a suitable perturbation on the

deterministic one. Therefore the lifetime of an unstable state can be studied in terms of the
random escape times, which in fact are governed by those approximated stochastic paths.
This fact allows us, in principle, to find—analytically—the lifetime of any unstable state.
The lack of an initial Gaussian regime does not pose any restrictions for determining the
statistical properties of the lifetime from an unstable state. Even for the case where the
inversion symmetry does not hold, the theory of thestochastic path perturbation approach
(SPPA) has shown to be a powerful technique to find an approximation to the first-passage
time distribution (FPTD) [5].

In our previous works we have pointed out that the time-scale characterizing the escape
from the instability is the lifetime of the unstable state calculated as the mean first-passage
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time (MFPT) [3, 5, 6]. Also the study of the transient relaxation of the system, i.e. the
anomalous fluctuations in the phase-space variable can be calculated using the SPPA.

Of particular importance is the case when the potential, in the normal form, breaks
the inversion symmetryX → −X and the unstable state is marginal atX = 0. Here we
will focus on that special case. Let us rescale the order parameter in such a way that the
attactor of the system is located atXat = 1. Our physical motivation to study the stochastic
differential equation (SDE)

d

dt
X = b + a(X2−X3)+√εξ(t) (1)

is inspired on the stochastic Semenov model for thermal explosive systems [6, 7], but this
kind of normal form (1) also appears in the standard model for the purely absortive optical
bistability laser [8]; the marginal case corresponds tob = 0. In the SDE (1)a is a positive
constant,ξ(t) is a zero mean Gaussian white noise andX represents the order parameter of
the system near the critical point.

The FPTD fromX = 0 to reach the attractor of (1) is given in terms of the lifetime of
the marginal unstable state, which is characterized by the SDE

d

dt
X = aX2+√εξ(t). (2)

This SDE can be worked out in a similar way as in [5], but we should remark that due
to the flatness of the potential at the initial stage (i.e. the marginal unstable pointX = 0)
the stochastic trajectories which go to the left will be strongly influenced by the ‘repulsive’
potential wall, while in contrast those trajectories going to the right can be well approximated
by biased Wiener stochastic paths. This is why a first-order perturbation theory in

√
ε is

not enough to obtain a good description of the FPTD as we remarked in our previous paper
[5].

Up to a first-order perturbation in the small parameter
√
ε, the SPPA predicts the

probability measure

Po(te) = 33/2

a
√

2πεt5/2
exp

(
−3

2
(a2εt3e )

−1

)
(3)

which also gives the MFPT

〈te〉Po(te) = (a2ε)−1/30( 1
6)(

3
2)

1/2/
√
π ≡ A−2/30( 1

6)(
3
2)

1/2/
√
π. (4)

The probability measure (3) can also be obtained by taking the limitb → 0 in the
distribution presented in equations (17) and (18) of [5]. However, the FPTD (3) does not
give a good description of the random escape trajectories from the marginal unstable point
X = 0.

Relaxation from a marginal unstable state has several interesting features that make
it very different from relaxation from an unstable state. Typical experiments concerning
relaxation close to marginality appear in optical bistable devices [8]. Strictly speaking at
the marginal unstable state, fluctuations are necessary to leave the stateX = 0 [5].

In this paper we shall present a much better approximation for tackling this problem.
Thus, in principle will be able to analyse all the moments of the first-passage time. We
have also made a comparison with Monte Carlo simulations showing excellent agreement
with our theoretical predictions.

The paper is organized as follows. In section 2 we develop a second-order perturbation
theory which naturally introduces a set of two (non-independent) random numbers, therefore
the application of the SPPA allows us to calculate the FPTD fromX = 0 to the attractor
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Xat = 1 of the problem posed in (1). In section 3 we introduce the instanton-like
approximation in order to study the anomalous fluctuation of the order parameterX(t),
and in section 4 we present the conclusions and our future research programme; detailed
calculations of the probability measure can be found in the appendix.

2. The stochastic path perturbation approach

2.1. Second-order perturbation

The problem presented in this paper is the characterization of the random time when the
stochastic process (1) reaches—for the first time—the attractorXat = 1 (by looking at each
stochastic realization of equation (2)). In this way we shall define a random escape time,
te, as the random time when amplitudeXsppa(t) diverges. This means that the time,te, is
going to be a function of a set of random numbers which ultimately will be characterized
by a specific probability measure. Then, the probability distribution ofte, i.e. the FPTD is
going to be characterized in a close way.

In order to introduce a perturbation theory in
√
ε it is convenient to use the parameter

A = a√ε, see equation (4). Following [5] we can write the stochastic paths,Xsppa(t), as
the ratio of two stochastic processes

Xsppa(t) = H(t)

Y (t)
. (5)

Using this nonlinear transformation in equation (2) we obtain an equivalent set of coupled
equations†

d

dt
H(t) = √εY (t)ξ(t) (6)

d

dt
Y (t) = −aH(t) (7)

where

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′).
Here the initial conditions areX(0) = H(0) = 0 and Y (0) = 1‡. For small

√
ε an

approximate solution of the coupled equations (6) and (7) can be considered approaching
Y (t) in equation (6). At the initial noise-diffusive regime in whichY (t) is close to its initial
value,H(t) is essentially a ‘pure’ diffusion process, so we obtain

H(t) ∼= √εW(t) (8)

where

W(t) =
∫ t

o

ξ(t ′) dt ′ (9)

is the Wiener process, hereW(0) = 0 has been used. In order to look for an iterative
solution, starting withY (0) = 1, we solve equation (7) with the approximate solution of
H(t) given by equation (8)

Y (t) ∼= 1− a√ε�(t)+ a2ε2(t) (10)

† Note that at this point we should define a prescription for the stochastic calculus. In particular we are going to
use the Stratonovich one. But the final result is independent of the specific calculus.
‡ In the absence of noise (ε = 0), X = 0 is the solution for all time in agreement with the dynamics for the
deterministic case of equation (2).
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where the new stochastic processes�(t) and2(t) are defined by

�(t) =
∫ t

o

W(t ′) dt ′ (11)

η(t) =
∫ t

o

�(t ′) dW(t ′) (12)

2(t) =
∫ t

o

η(t ′) dt ′ (13)

�(t) is a renormalized Gaussian process but2(t) is non-Gaussian. The difficulty in (10)
lies on the fact that both processes are in fact correlated (see the appendix).

After introducing a scaling transformation in the Wiener integrals, a second-order
approximation for the stochastic pathsXsppa(t) can be written in the form:

Xsppa(t) ∼=
√
εW(t)

1− a√εt3/2�+ a2εt32
(14)

where� ≡ �(1) and 2 ≡ 2(1) are random numbers. At this level the complicated
mechanism of the escape process can be noticed. At the early initial stage the numerator,
a Wiener processO(

√
ε), is dominant. From this expression it is simple to observe the

non-trivial fluctuations of the paths. The denominator gives the corrections, up to second
order in

√
ε, to the statistics due to the nonlinear contribution in the SDE (2), i.e.aX2.

Note that the numerator of (14) is bounded ift 6= ∞ with probability 1. Then the escape
time, defined byXsppa(te) = ∞, can be obtained as the zero of the denominator of the
stochastic paths given in (14)

1= At3/2e �− A2t3e 2 (15)

where, as before,A ≡ a√ε.
Up to this order the SPPA gives the random escape time,te, as a mapping with the

random numbers� and2, thus the random escape time can be found by invertingPA(te)

as a function of� and2.
Note thatP(�,2) is a non-Gaussian probability measure (see the appendix), on the

other hand in order to obtain asimpleanalytical formula forPA(te) we need to introduce a
statistically independent approximation, therefore we assume:

P(�,2) ≈ P(�)P (2). (16)

An improved approximation to thisstatistically independent assumptioncan also be
incorporated by using a quadratic non-diagonal probability measure, but we will show that
this is not necessary because the independent assumption (16) is enough to predict a good
agreement with the numerical simulations.

Rescaling time ass = t ′/t in the integrals of the Wiener process an exact expression
for P(�) can be obtained [5]. Therefore it is possible to see that� is a Gaussian random
variable characterized by the probability measure (see the appendix)

P(�) =
√

3

2π
exp(−3�2/2). (17)

The calculation ofP(2) is a difficult task, however, the calculation of the moments of2

are straightforward (see the appendix). Thus, using a renormalization procedure we can
approximate the probability measureP(2) by a Gaussian one

P(2) =
√

1

2π〈22〉 exp

( −22

2〈22〉
)

(18)
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Figure 1. (a) Plot of FPTD PA(te) ≡ Po(te)C(te), coming from the present second-order
perturbation theory (19), as a function ofte for A = 10. The dotted curve represents the Monte
Carlo simulations of the SDE (1) withb = 0, having reachedXat = 1 for the first time. The
correspondingO(

√
ε) probability distributionPo(te) is also shown. Details of the simulation

are given in [5]. (b) Plot of FPTDPA(te) as a function ofte for two values ofA(= 0.1, 1), the
dotted curve represents the Monte Carlo simulations of the SDE (1) withb = 0.

where〈22〉 = 1
180.

In order to work outPA(te) we need to look at the Jacobian of the transformation of
te = te(�,2). Thus, from (15) and after some algebraic manipulation we obtain

PA(te) =
∫ ∞
−∞

∫ ∞
−∞

δ (te − te(�,2)) P (�)P (2) d� d2 = Po(te)C(te) (19)

herePo(te) is theO(
√
ε) contribution, already given in (3).C(te) comes from the second-

order perturbation and is given by

C(te) =
ϕ

√
k
π

2(ϕ + k)e
(

1
ϕ+k

) {√
π(2ϕ + k)
ϕ
√
ϕ + k

[
1+ erf

(
1√
ϕ + k

)]
+ exp

( −1

ϕ + k
)}

(20)

where

ϕ ≡ 2
3A

2t3e

k ≡ 2
9〈22〉−1 = 2

9180.

Figures 1(a) and (b) depict the PA(te) curves for different values ofA. Also the
corresponding Monte Carlo simulations are shown for the same set of parameters.

From the structure of (3) and (20) we obtain the followingα-scale invariance property

Pα−3/2A(αte) =
PA(te)

α
(21)

whereα is any arbitrary length scale†.
The agreement between the simulations and the theory is good for different values of

A, as can be seen from the short and intermediate time-domains in figures 1(a) and (b)‡.
The long-time limit ofPA(te) predicts the asymptotic behaviourPA(te → ∞) ∼ t−2.5

e as
we had reported before [5]§. Therefore the present second-order perturbation theory is an

† The parameterA under the scale transformationX → lX, t → αt in equation (2) goes toα−3/2A, therefore
equation (21) follows.
‡ Note that from figure 1(b) the FPTD forA = 1 seems to fit better, at short times, than for the caseA = 0.1;
but the comparison should be made for the whole transient regime.
§ Note that in the physics of flames, one is usually interested in the transient behaviour of the FPTD rather than
in its long-time behaviour.



2292 M O Cáceres et al

important improvement to describe (analytically) the whole transient of the FPTD. This fact
can be seen, in figure 1(a), from the comparison betweenPo(te) and the full expression
PA(te) = Po(te)C(te) given in (19) and (20).

We want to remark that a second-order perturbation theory is a fundamental necessity
in order to be able to get a good probability distribution for any value ofA. This is so
because if we only considerPo(te) the error in this distribution, around the most probable
value of te, is some time larger than the 30% for small values ofA and even worse for
larger values.

2.2. Moments of the FPTD

The first and second cumulants of the FPTD,PA(te), are

〈te〉 =
∫ ∞
o

tePA(te) dte (22)

and

〈(te − 〈te〉)2〉 =
∫ ∞
o

(te − 〈te〉)2PA(te) dte. (23)

From (19) those cumulants can be analytically calculated as

〈te〉 = F1(A) (24)

where

F1(A) =
(

3

2

)4/3 √
k

π
A−2/3

∫ ∞
0

dϕ
ϕ−1/6

(ϕ + k) exp

( −k
ϕ (ϕ + k)

)
×
{√

π(2ϕ + k)
ϕ
√
ϕ + k

[
1+ erf

(
1√
ϕ + k

)]
+ exp

( −1

ϕ + k
)}

. (25)

On the other hand the variance is

〈(te − 〈te〉)2〉 = (F2(A)− F 2
1 (A)) (26)

with

F2(A) =
(

3

2

)5/3 √
k

π
A−4/3

∫ ∞
0

dϕ
ϕ1/6

(ϕ + k) exp

( −k
ϕ (ϕ + k)

)
×
{√

π(2ϕ + k)
ϕ
√
ϕ + k

[
1+ erf

(
1√
ϕ + k

)]
+ exp

( −1

ϕ + k
)}

. (27)

In figure (2) we present〈te〉 and 〈(te − 〈te〉)2〉 as function of the universal parameter
A, i.e. in this approximation the MFPT goes asA−2/3, on the other hand the variance of
te behaves asA−4/3. This non-trivial behaviour is quite different when compared with the
regular case (b 6= 0) treated in [5].

Note that in the small noise limit the variance of the MFPT increases, this result was
expected because the FPTD gets wider and wider as soon asA decreases. Therefore
if A decreases the most probable value of the FPTD lacks physical meaning because the
distribution goes to a very broad probability density. We stress that using the initial condition
X(0) = 0 our results, given in term of FPTD, go beyond the scope of the Coletet al [8]
analysis.

Finally, we want to remark that for the initial conditionX(0) = 0, our theoretical
predictions are in good agreement with the Monte Carlo simulation as can be readily seen
from figures 1(a) and (b).
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Figure 2. Log–log plot of the dimensionless mean
value and variance ofPA(te), as a function ofA ≡
a
√
ε the universal parameter of the normal form

(2). Note that the present second-order perturbation
theory removes the divergency of the second moment
appearing from a first-order perturbation one, see also
[5].

Figure 3. Plot of anomalous transient fluctuations
σ(t) = 〈X(t)2〉 − 〈X(t)〉2 from (30) as a function of
t for A = 1, the dotted curve represents the Monte
Carlo simulations of the SDE (1) withb = 0.

3. Transient fluctuations

In this section we basically follow our previous works [5, 3]. The transient fluctuation in
the phase-space variable is just defined as the mean quadratic deviation of theX(t) process
[2]

σ(t) = 〈X2〉 − 〈X〉2. (28)

In order to calculate the anomalous fluctuation, a saturation term in the normal form
equation (2) must be taken into account, i.e. we have to consider equation (1). Therefore we
approximate the transient towards the global attracting solution by introducing the instanton-
like approximation:

X(t) = Xat4(t − te) (29)

with Xat theO(1) macroscopic amplitude of the space variable characterizing the attractor,
and 4(t − te) the heaviside step function. Thus, the transient anomalous fluctuation is
characterized by

σ(t) = 3(t)(1−3(t)) (30)

where

3(t) = 〈4(t − te)〉 =
∫ ∞
o

4(t − te)PA(te) dte =
∫ t

o

PA(te) dte (31)

wherePA(te) is given in (19).
From figure 3 we see that the maximum of the functionσ(t) is at MFPT, t = 〈te〉,

in contrast with the regular caseb 6= 0 (see [5]) where the maximum of the anomalous

fluctuation was centred around the deterministic escape timeτ =
√

2
ab

. Note that in the
marginal case (b = 0) the width ofσ(t) decreases with the increase of the strength of the
noise, this fact can also be understood in terms of the variance ofte.

Figure 3 depicts the agreement of the anomalous fluctuationσ(t), for A = 1, against
the Monte Carlo simulations. On the other hand, as is usual, in the transient regime the
initial fluctuations are amplified and give rise to the transient anomalous fluctuations of
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O(1) as compared with the initial or final phase-space fluctuations ofO(
√
ε). Our formula

(30) gives a good result to describe, analytically, for the marginal case, the anomalous
fluctuation of the phase-space variable near the critical point.

4. Conclusion and discussion

This paper is inspired in a method recently developed and already successfully applied to
study relaxation from a subcritical pitchfork bifurcation [3] and to a non-symmetric potential
normal form [5]. In those previous papers some of us have shown that—at the marginal
case—the stochastic Semenov model leads to the normal form (2), therefore the FPTD is the
relevant distribution to study thermal explosive systems, in well stirred chemical reactors,
near the critical point [7, 1, 6].

In this paper we have analytically found the FPTD fromX = 0 to reach the attractor
Xat = 1 by analysing the lifetime to leave the marginal unstable stateX(0) = 0. In
section 2 we have introduced the SPPA and we have found a second-order perturbation
theory to describe those stochastic paths, see (14).

Figure 1 shows that the FPTD is in good agreement with the Monte Carlo simulation.
For largeA = a2√ε the agreement is also good, even when large values ofA, mean large
noise, and therefore our paths (14) could start to fail.

All the moments of the first-passage times can be written in terms of the probability
measurePA(te), also the universal parameter of the system (at the marginal case) was
shown to beA = a2√ε. In this approximation the FPTD has a long-tail characterized by
the power law asymptotic fromPA(te) ∼ t−2.5

e for te → ∞. Another remarkable result
from our FPTDPA(te) is theα-scale invariance property given in (21), which becomes a
useful tool to analyse experimental results. As soon as the noise decreases (A � 1) the
FPTD goes to a very broad probability measure, this is so because for the marginal case
the deterministic escape time diverges.

We have studied the anomalous fluctuation of (1), showing a very good agreement with
Monte Carlo simulations, see figure 3.

As a final remark we conclude that another interesting phenomenon to be studied is
the non-homogeneous generalization (a Ginzburg–Landau model) of (1). Near the critical
point, a non-homogeneous physicochemical reactor can be studied in terms of this sort of
normal form [9]. The present work and those previously reported [5] give the mathematical
tools to tackle this fundamental problem. Work along this line is in progress.
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Atómico Bariloche for its hospitality and to Secretarı́ia de Ciencia y Tecnologı́a de la
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Appendix

From definitions (11)–(13) it is simple to see that the processes�(t), 2(t) andη(t) fulfill
the set of SDE:

2̇ = η(t) (32)

η̇ = �(t)ξ(t) (33)

�̇ = W(t) (34)

Ẇ = ξ(t). (35)

We have worked out this set of SDE in the Stratonovich sense in order to calculate

〈2(t)〉 〈2(t)2〉 and 〈2(t)4〉.
In this way we can approximateP(2) as was given in (18).

The calculation of the correlation function〈�(t1)�(t2)〉 is straightforward and gives

〈�(t1)�(t2)〉 = 3t2t21 − t31
6

(36)

for t1 6 t2. This formula corrects a printing mistake made in [5]. Thus, using the generating
functional of the process�(t) it is possible to see thatP(�) is given by (17) as was also
remarked in the appendix of [5].

In order to calculate the first moment of2 it is useful to note from (34) that

〈W(t)�(t)〉 = t2

2
(37)

therefore〈2(t)〉 = ∫ t0 〈η(t ′)〉 dt ′ is null, and so all the odd moments of2 are null. Thus,
the probability measureP(2) must be centred around zero.

As the next step in order to approximate the probability measureP(2) we need to
calculate from (32) the second moment of2. In order to do this it is useful to note that

η(t1) = �(t1)W(t1)−
∫ t1

0
W(s1)

2 ds1. (38)

Therefore using (38) it is possible to see that the correlation function of the processη(t) is
given by

〈η(t1)η(t2)〉 = 1
12(min(t1, t2))

4. (39)

Thus, from (32) and (39) we finally get that the second moment of2 is given by

〈2(t)2〉 = t6

180
. (40)

To calculate—analytically—the moment〈2(t)4〉 is a big task, but we have done it
numerically finding the result:〈2(t)4〉 ' (3.32± 0.06)10−4t12 in agreement with the
theoretical scaling∼ t12.

From this result it is possible to see that the probability measureP(2) is non-
Gaussian. This is so because if2 ≡ 2(1) were Gaussian we should have obtained
〈24〉 = 3〈22〉2. From this result we can conclude thatP(2) is wider than a Gaussian
one with variance〈22〉 = 1

180. In order to know an estimation of this difference we can
introduce a renormalization procedure. Thus, we enforce that the widthd ≡ 〈z2〉 of a
Gaussian probabilityP(z) ∝ exp(−z2/2d), should minimize the difference with the true
(non-Gaussian) probability measureP(2) (characterized by only two parameters〈22〉 and
〈24〉).
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This renormalization procedure leads to a nonlinear minimum square problem, which
can be solved by finding the real solution of the algebraic polynomial of degree 3:

d3+ ( 1
18 − 1

3〈24〉)d − 1
18〈22〉 = 0. (41)

From the values given above it is possible to see, from (41), that there is no remarkable
difference if we just writeP(2) by using its second moment〈22〉 = 1

180, i.e.

P(2) '
√

180

2π
exp

(
−22

2
180

)
. (42)

On the other hand, in order to see how good our approximation is concerning the
statistical independence between� and2, we have calculated the correlatorK�2 defined
by

K�2 =
∣∣∣∣ 〈22�2〉
〈22〉〈�2〉 − 1

∣∣∣∣ . (43)

We have found, numerically, that〈22�2〉 ≈ (7.27±0.06)10−3, therefore using (40), (36) and
(43) we obtainK�2 ≈ 2.9, which is an estimation of the error made by using our statistically
independent assumption. If we had wished we could have made a better approximation than
(16) by introducing a two-dimensional (non-diagonal) Gaussian measure, with a parameter
(proportional toK�2) measuring the correlation between� and2. However, the agreement
of (19) with the Monte Carlo simulations leads us to adopt the simplification of the
statistically independent assumption.

References

[1] Nicolis G and Prigogine I 1977Self-Organization in Nonequilibrium Systems(New York: Wiley)
Nicolis G 1995Introduction to Nonlinear Science(Cambridge: Cambridge University Press)

[2] Susuki M 1984Prog. Theor. Phys. Suppl.79 125
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