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Abstract. The first-passage time distribution to reach the attractor of the stochastic differential
equationX (1) = a(X? — X3) + /e£(r) is analytically obtained by using a previously reported
scheme:the stochastic path perturbation approach second-order perturbation theory, in the
small noise parameteye, is introduced to analyse the random escape, of the stochastic paths,
from the marginal unstable stae= 0. The anomalous fluctuation of the phase-space variable
X (¢) is analytically calculated by using the instanton-like approximation. We have carried out
Monte Carlo simulations showing good agreement with our theoretical predictions.

1. Introduction

Nonlinear systems far from equilibrium exhibit a variety of instabilities when the appropriate
control parameters are changed [1,2]. By such changes of the control parameters the
system can be placed in an unstable state. Therefore the system, in general, will relax to
a metastable (or global) stationary state. This transient process is triggered by the noise
O(y/e) and the statistical description of such a transient constitutes one of the main subjects
of non-equilibrium statistical mechanics.

A detailed description of the relaxation process depends on the nature of the normal
form involved near the critical point of the system. Typical cases are those possessing the
inversion symmetry transformatiofi — —X. This case has been studied in order to analyse
the on-resonance single-mode laser with saturable absorber and in the optical Freedericksz
transition [3,4]. The theoretical approach is based on the fact that each stochastic path
(up to O(/e)) can be approximated systematically with a suitable perturbation on the
deterministic one. Therefore the lifetime of an unstable state can be studied in terms of the
random escape times, which in fact are governed by those approximated stochastic paths.
This fact allows us, in principle, to find—analytically—the lifetime of any unstable state.
The lack of an initial Gaussian regime does not pose any restrictions for determining the
statistical properties of the lifetime from an unstable state. Even for the case where the
inversion symmetry does not hold, the theory of gtechastic path perturbation approach
(SPPA) has shown to be a powerful technique to find an approximation to the first-passage
time distribution (FPTD) [5].

In our previous works we have pointed out that the time-scale characterizing the escape
from the instability is the lifetime of the unstable state calculated as the mean first-passage
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time (MFPT) [3,5,6]. Also the study of the transient relaxation of the system, i.e. the
anomalous fluctuations in the phase-space variable can be calculated using the SPPA.

Of particular importance is the case when the potential, in the normal form, breaks
the inversion symmetr)X — —X and the unstable state is marginalXat= 0. Here we
will focus on that special case. Let us rescale the order parameter in such a way that the
attactor of the system is located ¥, = 1. Our physical motivation to study the stochastic
differential equation (SDE)

%X =b+a(X?— X3+ Je&t) (1)

is inspired on the stochastic Semenov model for thermal explosive systems [6, 7], but this
kind of normal form (1) also appears in the standard model for the purely absortive optical
bistability laser [8]; the marginal case corresponds te 0. In the SDE (1) is a positive
constant£(¢) is a zero mean Gaussian white noise ahdepresents the order parameter of
the system near the critical point.

The FPTD fromX = 0 to reach the attractor of (1) is given in terms of the lifetime of
the marginal unstable state, which is characterized by the SDE

%x — aX? 4 et (1), 2)

This SDE can be worked out in a similar way as in [5], but we should remark that due
to the flatness of the potential at the initial stage (i.e. the marginal unstable YeinD)
the stochastic trajectories which go to the left will be strongly influenced by the ‘repulsive’
potential wall, while in contrast those trajectories going to the right can be well approximated
by biased Wiener stochastic paths. This is why a first-order perturbation theqty is
not enough to obtain a good description of the FPTD as we remarked in our previous paper
[5].

Up to a first-order perturbation in the small parametér, the SPPA predicts the
probability measure

P,(1,) = 3 ex —3( 2¢t3)7t )
o) = e O P\ T2

which also gives the MFPT
(te) b,y = (@)L (Y2 /m = AL (H (DY . (4)

The probability measure (3) can also be obtained by taking the bmit 0 in the
distribution presented in equations (17) and (18) of [5]. However, the FPTD (3) does not
give a good description of the random escape trajectories from the marginal unstable point
X =0.

Relaxation from a marginal unstable state has several interesting features that make
it very different from relaxation from an unstable state. Typical experiments concerning
relaxation close to marginality appear in optical bistable devices [8]. Strictly speaking at
the marginal unstable state, fluctuations are necessary to leave th& stafe[5].

In this paper we shall present a much better approximation for tackling this problem.
Thus, in principle will be able to analyse all the moments of the first-passage time. We
have also made a comparison with Monte Carlo simulations showing excellent agreement
with our theoretical predictions.

The paper is organized as follows. In section 2 we develop a second-order perturbation
theory which naturally introduces a set of two (non-independent) random numbers, therefore
the application of the SPPA allows us to calculate the FPTD fpor O to the attractor
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X, = 1 of the problem posed in (1). In section 3 we introduce the instanton-like
approximation in order to study the anomalous fluctuation of the order paraXiétgr

and in section 4 we present the conclusions and our future research programme; detailed
calculations of the probability measure can be found in the appendix.

2. The stochastic path perturbation approach

2.1. Second-order perturbation

The problem presented in this paper is the characterization of the random time when the
stochastic process (1) reaches—for the first time—the attragioe 1 (by looking at each
stochastic realization of equation (2)). In this way we shall define a random escape time,
t,, as the random time when amplitudg,,,(¢) diverges. This means that the timg, is
going to be a function of a set of random numbers which ultimately will be characterized
by a specific probability measure. Then, the probability distribution.,ofe. the FPTD is
going to be characterized in a close way.

In order to introduce a perturbation theory jfe it is convenient to use the parameter
A = a\/e, see equation (4). Following [5] we can write the stochastic paths, (1), as
the ratio of two stochastic processes

H
Xsppa @) = % (5)

Using this nonlinear transformation in equation (2) we obtain an equivalent set of coupled
equation$

d
G HO = Ver®ms® (6)
d
gY@ =—aH® @

where

(EM)=0 and (EMEM) =81 —1).

Here the initial conditions ar&(0) = H(0) = 0 andY(0) = 1. For small /e an
approximate solution of the coupled equations (6) and (7) can be considered approaching
Y (¢) in equation (6). At the initial noise-diffusive regime in whighr) is close to its initial

value, H(¢) is essentially a ‘pure’ diffusion process, so we obtain

H(@) = JeW () (8)

where
W(t):f £t dr’ 9

is the Wiener process, hef@(0) = 0 has been used. In order to look for an iterative
solution, starting withY (0) = 1, we solve equation (7) with the approximate solution of
H (t) given by equation (8)

Y() = 1—aJeQt) + a’eO ) (10)

1 Note that at this point we should define a prescription for the stochastic calculus. In particular we are going to
use the Stratonovich one. But the final result is independent of the specific calculus.

i In the absence of noise (= 0), X = 0 is the solution for all time in agreement with the dynamics for the
deterministic case of equation (2).
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where the new stochastic processeg) and ©(r) are defined by

Q(z):/ W) dt’ (11)
n(0) = / Q') dW (') (12)
Q@) = / n(t') dt’ (13)

Q(t) is a renormalized Gaussian process 8\4t) is non-Gaussian. The difficulty in (10)
lies on the fact that both processes are in fact correlated (see the appendix).

After introducing a scaling transformation in the Wiener integrals, a second-order
approximation for the stochastic patlfs,,, (r) can be written in the form:

VeW (@)
1—a\/er32Q + a?e130
where Q2 = Q(1) and ® = ©(1) are random numbers. At this level the complicated
mechanism of the escape process can be noticed. At the early initial stage the numerator,
a Wiener proces®)(4/¢), is dominant. From this expression it is simple to observe the
non-trivial fluctuations of the paths. The denominator gives the corrections, up to second
order in /€, to the statistics due to the nonlinear contribution in the SDE (2),qi¥.

Note that the numerator of (14) is bounded B oo with probability 1. Then the escape
time, defined byXj,,.(t.) = oo, can be obtained as the zero of the denominator of the
stochastic paths given in (14)

1= Ar32Q — A%30 (15)

where, as befored = a./e.

Up to this order the SPPA gives the random escape timeas a mapping with the
random number§2 and ®, thus the random escape time can be found by inverfing,)
as a function of2 and ®.

Note thatP(R2, ®) is a non-Gaussian probability measure (see the appendix), on the
other hand in order to obtainsmpleanalytical formula forP,(z.) we need to introduce a
statistically independent approximation, therefore we assume:

P(Q,0) ~ P(Q)P(O). (16)

An improved approximation to thistatistically independent assumptiaran also be
incorporated by using a quadratic non-diagonal probability measure, but we will show that
this is not necessary because the independent assumption (16) is enough to predict a good
agreement with the numerical simulations.

Rescaling time as = ¢'/t in the integrals of the Wiener process an exact expression
for P(2) can be obtained [5]. Therefore it is possible to see fha a Gaussian random
variable characterized by the probability measure (see the appendix)

_ 3 _1202
P(Q) =,/ 5 exn=327/2). (17)

The calculation ofP(®) is a difficult task, however, the calculation of the momentgof
are straightforward (see the appendix). Thus, using a renormalization procedure we can
approximate the probability measufg®) by a Gaussian one

1 -2
PO = |51 (265 (9

Xxppa (t) = (14)
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Figure 1. (a) Plot of FPTD P4(t.) = P,(t.)C(z.), coming from the present second-order
perturbation theory (19), as a function ffor A = 10. The dotted curve represents the Monte
Carlo simulations of the SDE (1) with = 0, having reached,, = 1 for the first time. The
corresponding?(4/€) probability distributionP,(z.) is also shown. Details of the simulation
are given in [5]. b) Plot of FPTD P,(z,) as a function of, for two values ofA(= 0.1, 1), the
dotted curve represents the Monte Carlo simulations of the SDE (1)witt0.

where(®?) = ;.
In order to work outP,(z,) we need to look at the Jacobian of the transformation of
t, = t,(2, ®). Thus, from (15) and after some algebraic manipulation we obtain

Pat) = / N / " 5t — 1.(2, ©) P@P(©)d2dO = P,()C(1)  (19)

here P,(z,) is the O( /¢) contribution, already given in (3)C(z,) comes from the second-
order perturbation and is given by

k
e () [V 0Ty o
2(p 4+ k) oo +k

el )]

where

A%

(®%)~! = 2180

Figures 14) and ) depict the P4(z,) curves for different values ofd. Also the

corresponding Monte Carlo simulations are shown for the same set of parameters.
From the structure of (3) and (20) we obtain the followigcale invariance property

P(te)

1
k

OIN win

Py-sz4(at,) = (21)

wherew is any arbitrary length scaje
The agreement between the simulations and the theory is good for different values of
A, as can be seen from the short and intermediate time-domains in figalearit( @)i.
The long-time limit of P4(z,) predicts the asymptotic behaviod, (t, — oo) ~ 1,25 as
we had reported before [&] Therefore the present second-order perturbation theory is an

t The parametert under the scale transformation — [X, + — «r in equation (2) goes ta—%/2A, therefore
equation (21) follows.

1 Note that from figure X) the FPTD forA = 1 seems to fit better, at short times, than for the case 0.1;

but the comparison should be made for the whole transient regime.

& Note that in the physics of flames, one is usually interested in the transient behaviour of the FPTD rather than
in its long-time behaviour.
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important improvement to describe (analytically) the whole transient of the FPTD. This fact
can be seen, in figure 4), from the comparison betweenR,(z,) and the full expression
P4(t,) = P,(t,)C(t,) given in (19) and (20).

We want to remark that a second-order perturbation theory is a fundamental necessity
in order to be able to get a good probability distribution for any valuedofThis is so
because if we only consider,(z,) the error in this distribution, around the most probable
value oft,, is some time larger than the 30% for small valuesdofind even worse for
larger values.

2.2. Moments of the FPTD

The first and second cumulants of the FPTR)(z,), are

(te> - /oo tePA(te) dte (22)
and
((te - e / (te te)) PA(te) dte (23)
From (19) those cumulants can be analytically calculated as
(te) = F1(A) (24)
where
4/3 f -1/6 —k
Fi(A 23 [Ty ¢ ( )
A= <2> 0 (p(¢+k)eXp @ (¢ +k)
ﬁf#"”)[ (ose)]+eli5)]
— 7|1 fl —— —_— . 25
X{ oo Tk er p+k LR VE: (2
On the other hand the variance is
((te = (t))?) = (F2(A) — F£(A)) (26)
with
5/3 [ 1/6 —k
Fa(A —a [Ty, # ( )
24 = <2) o Lot TP\ owrh
W‘”“‘)[ (o) o)l
—" |1 f 27
X{ oo +k e Vo+k e @ +k @7

In figure (2) we presentz,) and ((r, — (z.))?) as function of the universal parameter
A, i.e. in this approximation the MFPT goes 4s?/3, on the other hand the variance of
t, behaves agt—#3. This non-trivial behaviour is quite different when compared with the
regular casel # 0) treated in [5].

Note that in the small noise limit the variance of the MFPT increases, this result was
expected because the FPTD gets wider and wider as sooh dscreases. Therefore
if A decreases the most probable value of the FPTD lacks physical meaning because the
distribution goes to a very broad probability density. We stress that using the initial condition
X (0) = 0 our results, given in term of FPTD, go beyond the scope of the @tlat [8]
analysis.

Finally, we want to remark that for the initial conditioki(0) = 0, our theoretical
predictions are in good agreement with the Monte Carlo simulation as can be readily seen
from figures 14) and p).
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Figure 2. Log-log plot of the dimensionless meanFigure 3. Plot of anomalous transient fluctuations
value and variance oP,(r,), as a function ofA = o (t) = (X(1)?) — (X(1))? from (30) as a function of
a./e the universal parameter of the normal forms for A = 1, the dotted curve represents the Monte
(2). Note that the present second-order perturbatioBarlo simulations of the SDE (1) with = 0.

theory removes the divergency of the second moment

appearing from a first-order perturbation one, see also

5].

3. Transient fluctuations

In this section we basically follow our previous works [5,3]. The transient fluctuation in
the phase-space variable is just defined as the mean quadratic deviationXaf xhprocess

[2]
o(t) = (X% — (X)% (28)

In order to calculate the anomalous fluctuation, a saturation term in the normal form
equation (2) must be taken into account, i.e. we have to consider equation (1). Therefore we
approximate the transient towards the global attracting solution by introducing the instanton-
like approximation:

X)) =X, E@F —1,) (29)

with X,, the O(1) macroscopic amplitude of the space variable characterizing the attractor,
and 2(r — t.) the heaviside step function. Thus, the transient anomalous fluctuation is
characterized by

o) = A1 - A@) (30)

where
t

A1) = (E(t — 1)) =/ E(t — 1) Pa(t.) dt, =f Py(te) dt. (31)
where P, (t,) is given in (19).

From figure 3 we see that the maximum of the functiofa) is at MFPT,z = (z.),
in contrast with the regular cage# 0 (see [5]) where the maximum of the anomalous

fluctuation was centred around the deterministic escape time‘/u—%). Note that in the

marginal casel = 0) the width ofo (¢) decreases with the increase of the strength of the
noise, this fact can also be understood in terms of the variange of

Figure 3 depicts the agreement of the anomalous fluctuatioy) for A = 1, against
the Monte Carlo simulations. On the other hand, as is usual, in the transient regime the
initial fluctuations are amplified and give rise to the transient anomalous fluctuations of
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0O(1) as compared with the initial or final phase-space fluctuation8@fe). Our formula
(30) gives a good result to describe, analytically, for the marginal case, the anomalous
fluctuation of the phase-space variable near the critical point.

4. Conclusion and discussion

This paper is inspired in a method recently developed and already successfully applied to
study relaxation from a subcritical pitchfork bifurcation [3] and to a non-symmetric potential
normal form [5]. In those previous papers some of us have shown that—at the marginal
case—the stochastic Semenov model leads to the normal form (2), therefore the FPTD is the
relevant distribution to study thermal explosive systems, in well stirred chemical reactors,
near the critical point [7, 1, 6].

In this paper we have analytically found the FPTD fram= 0 to reach the attractor
X, = 1 by analysing the lifetime to leave the marginal unstable sk&t@ = 0. In
section 2 we have introduced the SPPA and we have found a second-order perturbation
theory to describe those stochastic paths, see (14).

Figure 1 shows that the FPTD is in good agreement with the Monte Carlo simulation.
For largeA = a?,/e the agreement is also good, even when large values, ofiean large
noise, and therefore our paths (14) could start to fail.

All the moments of the first-passage times can be written in terms of the probability
measureP,(z,), also the universal parameter of the system (at the marginal case) was
shown to beA = a?,/e. In this approximation the FPTD has a long-tail characterized by
the power law asymptotic fronP,(z,) ~ t;2~5 for t, — oo. Another remarkable result
from our FPTD P4(z.) is the a-scale invariance property given in (21), which becomes a
useful tool to analyse experimental results. As soon as the noise decrdagesl] the
FPTD goes to a very broad probability measure, this is so because for the marginal case
the deterministic escape time diverges.

We have studied the anomalous fluctuation of (1), showing a very good agreement with
Monte Carlo simulations, see figure 3.

As a final remark we conclude that another interesting phenomenon to be studied is
the non-homogeneous generalization (a Ginzburg—Landau model) of (1). Near the critical
point, a non-homogeneous physicochemical reactor can be studied in terms of this sort of
normal form [9]. The present work and those previously reported [5] give the mathematical
tools to tackle this fundamental problem. Work along this line is in progress.
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Appendix

From definitions (11)—(13) it is simple to see that the processes, ©(r) andn(r) fulfill
the set of SDE:

O = (1) (32)
n=QME&®) (33)
Q=W(®) (34)
W = &(r). (35)

We have worked out this set of SDE in the Stratonovich sense in order to calculate
(©()) (©(1?) and  (O(n)%).

In this way we can approximatB(®) as was given in (18).

The calculation of the correlation functigq® (1) 2 (z2)) is straightforward and gives
30212 — 13

(QuQ) = =

for t; < f,. This formula corrects a printing mistake made in [5]. Thus, using the generating
functional of the proces () it is possible to see thak () is given by (17) as was also
remarked in the appendix of [5].

In order to calculate the first moment 6f it is useful to note from (34) that

2

WHRm) =" 37)

therefore(® (1)) = fé(r}(f’)) dr’ is null, and so all the odd moments @f are null. Thus,
the probability measur® (®) must be centred around zero.

As the next step in order to approximate the probability measui®) we need to
calculate from (32) the second moment@f In order to do this it is useful to note that

(36)

n(12) = QUOW (1) — /O W(s)? dss. (38)

Therefore using (38) it is possible to see that the correlation function of the pre@éds
given by

(n(t)n(t2)) = f5(Min(ra, 22))*. (39)
Thus, from (32) and (39) we finally get that the second momert @ given by
6
2 t
= . 4
(O = 150 (40)

To calculate—analytically—the momenr®(r)%) is a big task, but we have done it
numerically finding the result:(®(r)*) ~ (3.32 4+ 0.06)10 %12 in agreement with the
theoretical scaling- *2.

From this result it is possible to see that the probability mease®) is non-
Gaussian. This is so because@f = ©(1) were Gaussian we should have obtained
(0% = 3(®%2. From this result we can conclude thA{(®) is wider than a Gaussian
one with variancg®?) = 1%0. In order to know an estimation of this difference we can
introduce a renormalization procedure. Thus, we enforce that the width (z2) of a
Gaussian probability? (z) o« exp(—z?/2d), should minimize the difference with the true
(non-Gaussian) probability measuPg®) (characterized by only two parameter3?) and
(©4).
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This renormalization procedure leads to a nonlinear minimum square problem, which
can be solved by finding the real solution of the algebraic polynomial of degree 3:

d*+ (5 — 3(@*)d — L(@%) =0. (41)
From the values given above it is possible to see, from (41), that there is no remarkable
difference if we just writeP (®) by using its second momeK®?) = 1—20, ie.
/180 -0?
P(®) ~,/— exp<2> . (42)
2 %0

On the other hand, in order to see how good our approximation is concerning the
statistical independence betwe@nand ®, we have calculated the correlat&ik,o defined

by

_ | ©%?)
Koo = ‘<®><sz> - 1‘ | (43)

We have found, numerically, tha®?Q?) ~ (7.274+0.06)10°3, therefore using (40), (36) and

(43) we obtainkqe ~ 2.9, which is an estimation of the error made by using our statistically
independent assumption. If we had wished we could have made a better approximation than
(16) by introducing a two-dimensional (non-diagonal) Gaussian measure, with a parameter
(proportional toK o) measuring the correlation betwe@rand®. However, the agreement

of (19) with the Monte Carlo simulations leads us to adopt the simplification of the
statistically independent assumption.
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